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Exercise 1 (7.2.4). If α(x) := −x and ω(x) := x and if α(x) ≤ f(x) ≤ ω(x) for all x ∈ [0, 1],
does it follow from the squeeze Theorem 7.2.3 that f ∈ R[0, 1]?

Proof. No. Consider

f(x) :=

{
x, x rational,

0, x irrational.

Then f /∈ R[0, 1]. Indeed, let Ṗn := {([ i−1
n
, i
n
], 2i−1

2n
)}ni=1 and Q̇n := {([ i−1

n
, i
n
], 2(i−1)+

√
2

2n
)}ni=1,

then ∥Ṗn∥ = ∥Q̇n∥ = 1
n
and we have

S(f ; Ṗn) =
n∑

i=1

2i− 1

2n2
=

1

2
, S(f ; Q̇n) = 0,

which implies that for arbitrary η > 0, there exist two partitions Ṗn and Q̇n with n := [η−1]+1
such that |S(f, Ṗn)− S(f, Q̇n)| = 1/2. Therefore, Theorem 7.2.3 is not applicable. □

Exercise 2 (7.2.8). Suppose that f is continuous on [a, b], that f(x) ≥ 0 for all x ∈ [a, b]

and that
∫ b

a
f = 0. Prove that f(x) = 0 for all x ∈ [a, b].

Proof. Let us prove by contradiction. Assume there exist c ∈ (a, b) such that f(c) > 0, then
by continuity of f , there exists δ > 0 such that

f(x) >
1

2
f(c),

for |x− c| < δ. Then ∫ b

a

f ≥
∫ c+δ

c−δ

f ≥ f(c)δ > 0,

which is a contradiction. □

Exercise 3 (7.2.9). Show that the continuity hypothesis in preceding exercise cannot be
dropped.

Proof. Consider

f(x) :=

{
1, x = a,

0, x ̸= a.

Then
∫ b

a
f = 0. Indeed, for arbitrary ε > 0, let 0 < δ < ε, then for all partitions Ṗ with

∥Ṗ∥ < δ, we have

|S(f ; Ṗ )| < δ < ε.

However, f(x) ̸= 0 for all x ∈ [a, b]. □

Exercise 4 (7.2.11). If f is bounded byM on [a, b] and if the restriction of f to every interval

[c, b] where c ∈ (a, b) is Riemann integrable, show that f ∈ R[a, b] and that
∫ b

c
f →

∫ b

a
f as

c → a+.
1
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Proof. Let ε > 0, let us define

αε(x) :=

{
−M, a ≤ x ≤ a+ ε

4M
,

f(x), a+ ε
4M

< x ≤ b.
ωε :=

{
M, a ≤ x ≤ a+ ε

4M
,

f(x), a+ ε
4M

< x ≤ b.

Then we have αε ≤ f ≤ ωε. Moreover,∣∣∣∣∫ b

a

αc −
∫ b

a

ωc

∣∣∣∣ ≤ ε

2
< ε.

Therefore by Squeeze theorem, we have f ∈ R[a, b].
Let a < c < a+ ε

2M
, then∣∣∣∣∫ b

c

f −
∫ b

a

f

∣∣∣∣ = ∣∣∣∣∫ c

a

f

∣∣∣∣ ≤ M(c− a) ≤ ε

2
< ε,

which implies that
∫ b

c
f →

∫ b

a
f as c → a+. □

Exercise 5 (7.2.12). Show that g(x) := sin(1/x) for x ∈ (0, 1] and g(0) := 0 belongs to
R[0, 1].

Proof. Since |g| ≤ 1 and g is continuous on [c, 1] for c > 0, which implies g ∈ R[c, 1], by the
above Exercise 4, we have f ∈ R[0, 1]. □

Exercise 6 (7.2.14). Suppose that f : [a, b] → R, that a = c0 < c1 < · · · < cm = b and that
the restrictions of f to [ci−1, ci] belong to R[ci−1, ci] for i = 1, ...,m. Prove that f ∈ R[a, b]
and that the formula in Corollary 7.2.11 holds.

Proof. We use mathematical induction on m ∈ N.
For m = 1, the conclusion is trivial. For m = 2, the conclusion follows by Additivity

theorem.
Let us assume the conclusion is true for m ≥ k for k ∈ N. For m = k + 1, by assumption,

f ∈ R[a, ck], moreover, using Additivity theorem again, since f ∈ R[ck, b], we have f ∈
R[a, b]. In addition, we have ∫ b

a

f =

∫ ck

a

f +

∫ b

ck

f

=
k∑

i=1

∫ ci

ci−1

f +

∫ b

ck

f

=
k+1∑
i=1

∫ ci

ci−1

f.

which implies the conclusion holds for m = k+1. Therefore by mathematical induction, the
conclusion is true for all m ∈ N. □


